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Abstract-The numerical solution of a class of problems for non-linear mass transfer in laminar diffusion 
boundary layers for a gas-liquid system is obtained utiliig a numerically stable continuation type shooting 
procedure for the riumerical integration of asymptotic boundary value problems for systems of ordinary 
differential equations. The influence of gas solnbility and non-linear effects in the gas on the hydr~~~~s 

and the mass transfer have been studied. Numerical results are also reported. 

INTRODUCTION 

IN PART I of this study [I] an asymptotic theory was 
developed allowing for the ~l~ulation of the rates of 
mass transfer in the diffusion boundary layers close 
to the moving phase boundary of a gas-liquid system 
and accounting for the non-linear effects induced by 
an intensive interphase mass transfer. Comparison of 
these effects in the two phases by means of OS and f14 

(1) 

indicates that they differ by more than two orders of 
magnitude. This means that Bs and O4 carmot be small 
simultaneously when real effects are to be determined. 

It was shown in ref. [I] that for practically inter- 
esting cases e4 % 0 while 13~ depends on the con- 
centration of the substance absorbed in the gas phase 
and it is small for low concentrations only. Thus, for 
moderately high and high concentrations the asymp- 
totic theory ceases to be valid. For this reason a 
numerical procedure has to be developed and such a 
procedure will be presented in what follows. Numeri- 
cal results for several values of e3 and x/s, will be 
reported and discussed. 

STATEMENT OF THE PROBLEM AND THE 
NUMERICAL METHOD 

We shall he concerned with the numerical solution 
of the following boundary value problem for a system 
of ordinary differential equations [l] : 

K’+G’4t& = 0, 41 = dh(t;,). 

#;“+~~‘&K = 0% 42 = Mtd, 

mm 31:,-I 

5, >o 
r2 >o 

801 

subject to boundary conditions 

4%(O) = -&4%(O) 

4;(O) = 2e~~~~(o) 

J/l(O) = 1 -k(O) 

cp; (03) = 2.5; * 

@I ((XJ) = 0 

440) = edm 

gyo) = - :e, z 
0 

‘$;yo) 

$4(O) = $c (0) 

&(03) = ET’ 

I; = 0. (3) 

As seen from equations (2) and (3) this system could 
be decoupled into two separate boundary value prob- 
lems. The first one comprises the first two equations 
from equations (2) and the first five equations from 
equations (3), while the second one comprises the 
remaining equations of equations (2) and (3). 

Assuming initial guesses for &(O) and &(O) and 
utilizing the improved continuation type shooting 
procedure [2] one could fmd approximation for ~~(0) 



802 N. L. VULCHANOV and Cm. B. BOYADJW 

Table 1 

xlso 83 h(O) d{(O) K(O) 

0 0 0 0.211 (0.200) 1.30 
0.1 0.0785 (0.0664) 0.215 (0.200) 1.40 
0.2 0.170 (0.133) 0.217 (0.200) 1.52 
0.3 0.280 (0.199) 0.219 (0.200) 1.66 

0.1 0 0 0.215 1.30 
0.1 0.0733 0.216 1.39 
0.2 0.157 0.217 1.50 
0.3 0.254 0.219 1.63 

1 0 8 0.216 (0.200) 1.30 

::: Ok952 0450 (0 0416) 0.218 0.217 (0:0832) (0.200) (0.200) 1.36 1.42 
0.3 0.146 (0.125) 0.219 (0.200) 1.45 

10 0 0 0.217 1.30 
0.1 0.0101 0.217 1.32 
0.2 0.202 0.217 1.33 
0.3 0.0304 0.217 1.34 

and &‘(O). These quantities can be used in the second 
system and therefrom to calculate new approxi- 
mations for &(O) and &(O), etc. Thus, integrating 
iteratively the two systems one obtains on every iter- 
ation improved estimates for the unknown initial 
values 4,(O), 4;(O), . . . , i&(O). If this iterative process 
is convergent it will yield approximations for the 
initial conditions mentioned and estimates for the 
‘computational infinities’ for both phases together 
with estimates for the reliability of the computed solu- 
tions [2]. If X/E,, > 1 one has to modify slightly the 
iteration scheme (the third and eighth equations from 
equations (3) will exchange places) to suppress ampli- 
fying disturbances due to the unknown initial con- 
dition t&(O). 

Thus one has the following iteration schemes. 

For X/E,, < 1: 

&“W+ ‘) +E; ‘4$k+ ‘+#,;r(k+ 1) = 0, l, > 0 

~;‘(k+‘)+E,~f+‘)~;(k+‘) = l-j, (, > 0 (4) 

Table 2 

XI&l 0, *l(O) -MO) 

0 0 0.999 (1) 0.729 (0.725) 
0.1 0.999 (1) 0.785 (0.751) 
0.2 0.999 (1) 0.851 (0.776) 
0.3 0.999 (1) 0.932 (0.801) 

0.1 0 0.941 0.687 
0.1 0.937 0.733 
0.2 0.933 0.787 
0.3 0.928 0.848 

1 0 0.617 (0.633) 0.45 1 (0.43 1) 
0.1 0.603 (0.627) 0.460 (0.438) 
0.2 0.596 (0.622) 0.476 (0.444) 
0.3 0.583 (0.616) 0.487 (0.450) 

10 0 0.138 0.101 
0.1 0.137 0.101 
0.2 0.136 0.101 
0.3 0.135 0.101 

&k”‘(O) = 4,lp(O), 5, = 0 

@“‘(O) = 2e,E’C$;@)(o), 
s’ 

{, = r* = 0 

JIF”‘(O) = 1 -‘@(O), Cl = r2 = 0 

4 ;(k+‘)(oo) = 2&r’, t,+cc 

$f’ ‘)(a) = 0, t,+aJ (5) 

where ‘,IY,‘~‘(O), 4;“‘(O) and I(/$“‘(O) are prescribed 
initial guesses 

dYk+ ‘) +2&y *$lp+ I)&‘@+ ‘) = 0, t* > 0 

I&‘(~+ ‘) +2&&P+ ‘)tj;Q+ ‘) = 0, t2 > 0 (6) 

f#J$““‘(O) = 0,‘&(~)(O) 9 c* = 0 

&fP.+ ‘) (0) = - $9, 2 
0 

2 &,‘k+ “(O), r2 = 5’ = 0 

,Q+ O(o) = &$;‘k+ U(o), 

Eo 

r2 = [, = 0. 

&(k+ ‘) (co) = E; ‘, 52 + co 

lj$k+‘)(cn) = 0, t2 + co (7) 

where $$“‘(O) is a prescribed initial guess. 
For x/so 2 1 the first three equations of equations 

(5) and (7) are replaced 

dP”‘(O) = -e&(k)(o), t;, = 0 

$;tk+ ‘) (0) = 28, ~&(k)(O), <, = r2 = 0 

5’ = 52 = 0 

+p+ “(0) = e&“‘(o), r2 = 0 (8) 

&@+I)(()) = -$I, f.! 0 82 

2 ,$;“k+ “(o), 
r2 = t* = 0 

lgk”‘(0) = l-J/p+“(o), c2 = 5, = 0 

k=0,1,2,... 

where $;‘o’(O), &(“‘(O) 
initial guesses. 

The iteration loop 
0,1,2 )...) n. 

(9) 

and Jl$“‘(O) are prescribed 

parameter k takes values 

When k = n there are two possibilities. 
(a) n G nmax. 
The iterative process has been convergent in the 

sense that 

IIy(“)-y(n-‘)II < 6, llyll < 1 

ll-$$+, llvll>1 (10) 

where /I * 11 is the Euclidean vector norm ; ( - )’ denotes 
differentiation in the independent variable, 5, or c2, 
respectively; 6 is the prescribed accuracy (usually an 
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FIG. 1. 

order of magnitude less than the accuracy of the solu- 
tion of the corresponding boundary value problem), 
the vector y is defined as 

Y’ = +#9 (O&c% (OL am, $4 (01, $4 (01% 

42(0)9 44(O), K(O), @2(O), &CO>> (11) 

and nmar is the prescribed maximum admissible num- 
ber of iterations. 

(b) n = G,+ 1 and the convergence criterion, 
equations (10) have not been satisfied. 

63 = 00) 
es= 0.112) 
838 0.2(3) 
e,= 0.3(4) 

C!.KJI 
FIG. 2. 

x/so-O 
= 001 
= O.l(2f 
=0.2t3f 

8, =0.3(4) 

FIG. 3. 

All quantities not explained in the text are listed in 
the Nomenclature of ref. [I]. The prescribed initial 
guesses mentioned in the above are taken as the values 
of the corresponding quantities assuming that non- 
linear e&&s are absent 131. 

DISCUSSION OF THE NUMERICAL RESULTS 

The iterative procedure described in the previous 
section was programmed in ANSI FORTRAN and 
numerical simulation was performed on an IBM 

X/%‘I 

ea q 00) 
e3 = 0.1(2) 
83 * 0.2f3f 
e3 - 0.3141 

- 

“.“” 

F1c.4. 
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360/370 computer in OS environment. In all cal- 
culations to be described the following parameters 
were used: E~ = 1, s2 =20, 13, =O.l, @2=0.152, 
t1.+ = 0, 6 = 10-3, ??,*, = 25, ~/so = 10-3,0.1, l,lO, 
63 = O,O.l, 0.2,0.3. Representative results for the cal- 
culated initial conditions (the vector as defined from 
equation (11)) are given in Tables 1 and 2. The cal- 
culated functions are shown on Figs. l-4 and dis- 
cussed in what follows. For fixed initial guesses [3] the 
rate of convergent varied with the values of x/so and 
o3 being poor for fi3 large and X/E* = 1 (n = 17) 
and very fast for 8, = 0 and X/E,, = 1 (n = 2)-the 
initial guesses for this case were taken from ref. [3]. 
One iteration usually took about 5-6 min CPU time 
and comprises the successive integration of equations 
(4) and (5) or (8), and equations (6) and (7) or (9). 
For the gas (the first five components of y) the com- 
putational infinity was roughly six units in the dimen- 
sionless independent variable, while for the liquid (the 
last five components of y) it was in the range of 2O- 
40 units. 

THE VELOCITY DlSTRi6UTlONS 

The velocity distributions in the diffusion boundary 
layers are determined by the functions (p;(t,) and 
&(c2) (Figs. 1 and 2), for different values of x/s0 
and 6,. These figures show the influence of the mass 
transfer on the hydr~ynamics of the flow and, in 
particular, on the velocity component, normal to the 
phase interface and determined by the values of b,(O) 
and &(O) (Table 1). In this table one can also find 
values for b;(O) and (p;‘(O) calculated according to the 
previous section. In parentheses we have given the 
values of the same quantities as calculated by means 
of the asymptotic theory [l]. 

THE CONCENTRATION DISTRIBUTIONS 

The concentration distributions $,(< $1 and &(c2) 
are shown on Figs. 3 and 4 for the corresponding 
values of x/s0 and g3. From these figures one can see 
the non-linear effects in the gas and their influence on 
the mass transfer in the liquid. The corresponding 

values of $,(O) and t+&(O) as calculated according to 
the previous section are summarized in Table 2. 
Again, in parentheses we have listed the values of 
the same quantities calculated through the asymptotic 

theory [l], 
In ref. [1] it was shown that the interphase mass 

transfer and the mass transfer in the separate phases 
are determined in a unique manner by the dimensionless 

diffusive fluxes I&(O) and t&(O) at the phase interface. 
numerical data for these quantities can also be found 
in Table 2. 

CONCLUSIONS 

The numerical results obtained indicate that the 
non-linear effects in the gas phase are most pro- 
nounced for highly soluble gases (x/go -+ 0). When the 
solubility of the gas is moderate (x/s0 N 1) the non- 
linear effects are still significant, but when the solu- 
bility of the gas decreases (x/s0 z+ 1) they can be 
neglected. 

The non-linear effects in the liquid are the result 
of the non-linear mass transfer in the gas. They are 
negligible in respect to the hydrodynamics. Mass 
transfer in the liquid depends most strongly on the 
non-linear effects in the gas for moderately soluble 

gases (x/s0 N 1). For highly soluble gases (X/E,, -+ 0) 
and weakly soluble ones (x/z,, > 102) it is negligible 
because in the former case the mass transfer is limited 
only by the gas, while in the latter one, the non-linear 
effects can be neglected. 
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TRANSFERT DE MASSE NON LINEAIRE DANS DES COUCHES LIMITES- 
2. ETUDE NUMERIQUE 

R&&+-La solution numkrique d’une classe de probkmes pour le transfert de masse non lintaire dans 
des couches limites laminaire de diffusion, d’un systkme gaz-liquide, est obtenue en utilisant une prokdure 
numbriquement stable pour l’intkgration des syst&mes d’kquations diffkrentielles, On considkre l’influence 
de la solubilitk du gaz et des effets non linhires dans le gaz sur I’hydrodynamique et le transfert de masse. 

On ptisente aussi des &sultats nurrkriques. 
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NICHTLINEARER MASSENTRANSPORT IN GRENZSCHICHTEN- 
2. NUMERISCHE UNTERSUCHUNG 

Znsanuneofassung-Es wird die numerische Losung einer Klasse von Problemen des nichtlinearen 
Massentransports in laminaren Diffusionsgrenzschichten fiir Gas-Fliissigkeits-Systeme ermittelt. Zur 
numerischen Integration der asymptotischen Grenzwertprobleme bei Systemen gewiihnlicher Differ- 
entialgleichungen wird ein numerisch stabiles Verfahren vom Erhaltungstyp verwendet. Der EinfluD der 
Gasliislichkeit und nichtlinearer Effekte im Gas auf die Hydrodynamik und den Massentransport wurden 

untersucht. Es werden numerische Ergebnisse vorgestellt. 

HEJIMHEHHbIH MACCOOSMEH B HOI-PAHWIHbIX CJIOlIX-2. WICJIEHHOE 
HCCJIEJIOBAHHE 

AEtWTarpiPHCnOJrb3ya ycTOi+tHBb6i, Hell~blBHOI'O THlIaMCTOP,¶HCJleHHOrO HHTe~HpOBaHHJi aCHMlI- 

TOTHWCKHX VaHHWibIX 3aAa'l AJIX CECTCM 06blKHOBeHHbIX AH@C~Hl4BiUIbHbIX )'@IHeHHii, Ha3bIBZ%- 

~arii M~TOA~M II~H~~~~JIKH,II~~~I~EI~ ~cnetinoepemetirre Ynacca 3anaq Hemmetkoro MaczonepeHoCa 

B JtaMHHapHOM AH449'3HOHHOM IlOl-paHWtHOM CJIOe J&W CIICTCM 'ra3-XWAKOCTb'. ki3ySeHO BJlHRHHe 

pacraopriMocrn rasa H Henmieihiblx -6~0~ B ra3e tia MnponmiaMnrcy n t4acconepenoc. IIpencrae- 
new Yucnennbre pe3ynbraTbt. 
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